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.Capture and Acceleration — Stage 1 Scenario and Modeling

The magnet ramp is driven by a 15 Hz resonant power supply plus an independent
second harmonic supply that may be adjusted in phase and amplitude to minimize the
required peak rf voltage.

A macro-particle tracking model has been used for the entire cycle from multi-turn
injection through matching to Main Injector buckets. The injected protons are assumed
to be a continuous coasting beam lasting up to 90 us, timed symmetrically about
dBldt=0. Other timings have been tried as well, but for an injection period this short
nothing better has been found. For nominal linac intensity, 70 ps is sufficient to give
the required 3 x 10'* protons. The fixed parameters are those from previous table.

“The perfectly conducting wall term is the only source of the collective potential included
in these simulations.

The rf voltage is raised linearly during injection from 0 to 65 kV. Because of the large
slip factor n for this machine, the particles near +180 deg. of rf phase are all captured in
this simple maneuver. Certainly some are quite close to the separatrix and subject to
later loss because of space charge and limited rf voltage, but these losses are

-essentially eliminated by use of the inductive insert. They could also be largely ~ - - —
eliminated with a substantially higher rf voltage. o= T —

Comparison of RMS emittance at extraction and fractional heam loss during
complete cycle for optimum parameters, and for cases each differing_from the

optimum in a single property.

Emittance Beam Loss
Optimum case 0.02 eVs 0.03%
All rf clumped 0.015 eVs 0.21%
rf in two sets 0.018 eVs 0.07%
no inductive insert 0.025 eVvs 3.49% | <=

~ Clearly the inductive insert is a significant element in this scenario; a limited amount of
rf focusing is supplemented with self-excited focusing voltage. The character of the
inductance curve suggests that there is room for refinement here.
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Figure 2. Particle distribution just following the first few
turns of injection. The short line is at 3.9 Iev.

Figure 3 shows the distribution after 2800 turns. With no noise or space charge voltages present.
the particles remain within the prescribed orbit and the clear gap is maintained.

-J"W - .--\-—-‘-‘-'\\
o o~ "aa, -
e . pS
ot “ua,
" ‘\
'f"l "\..‘.
o T,
-.-" k‘l-

,, H‘\
P Y
wa” e

& A
b -
~ - e
.. P
b o
. o
" N &

M . . o
. .
“"sq‘_ ! . _,u"r
Sraa, ot
- Lo
‘H‘,___' - _'ﬂ"'#'
I P + 0 . g - . . . « " .
R .
. Line charge A(s)
: at 8O0 turns.
.
L] r o
[ 3 +
. .
[ -
P 1 . S

‘Figure 3. Charge distribution after 2800 tums. The hne
charge projection A(s) is for 800 turns.

The projection of space charge density as a function of distance s along the orbit is shown as A(s).
Because the high momentum particles move more rapidly around the orbit this function changes as
a function of time during filling. This projection represents the distribution at 800 turns. The
density appears to decay exponentially at each end of the constant region. These decaying sections
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Effect of Heati'ng---the Inductor Ferrite

s Ferrite Inductor (2 modules) at m Ferrite at 130° C
‘room temperature
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room temperature case
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Figure 3. Response curves for resonance measured at 23° C
and 100° C. Temperature increase decreases )
and increases magnetic permeability
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" The Determination of Resonant Modes in Inductive |

Inserts for Use in the FNAL Booster

Daniel Garcia
Fermi National Accelerator Laboratory
. &
‘Massachusetts Institute of Technology
May 24 — August 10

Abstract

In response to the apparent success of inductive inserts installed at Los Alamos’s
Proton Storage Ring, two new inserts have been built to compensate for the effects of
longitudinal space charge in the Booster at FNAL. These cavities contain resonant
modes that could be excited by the Booster’s beam. Thus, the cavities were
experimentally examined to distinguish which frequencies would be at risk for causing
self-bunching of the beam or coupled bunch oscillations. -
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FERRITE RADIAL TRANSMISSION LINE

First considerenly E and H ﬁeids_ within the ferrite.

Ignore PR loss In metal shell. Consider ohiy power
loss in ferrite dug to g’

E; =a 0 + B2

Hy =-Hartk) + BHPta)

Set E; =0atr=bh.
Set H, =0atr=0

Later consider the effect of additional stored electrical
energy within the region from the ferrite to the axis,
using ‘periodic’ boundary conditions between the dashed
lines.

Al resonance the total stored energy equals 2 x W, ¥
Because the same integral expressions are used to develnp WandP, Q= i

The E and H integrals, sans constants, are;

01
.a.uaL.gm (8.) ¥109) ~(sin8 ) 310k} (cos(8 ) ¥1€ie0) ~ (sin8 T}
.-uu.:szj [(Sin y °) k) - (cos (8 5) - YOCK ,))] [(s,'n(ﬂ o) J0Ck:0)) ~ (cos (8 )-¥O(k: r))]ff dr

—H= E ].HH*('IV P= %&"J.Hthv

By setting the resonant frequency to 76 MHz and balancing the slectrical and
magnetic energy by varying, # one finds values for k and 2.

Now, using measured Q= 3.5, one finds ¢'=129,
Using this value for g “in the above power expression one canfind a vaiua for Ry,

The result is that Ry, is almost exactly 3 kOhms per meter,



(4-01}
RADIAL TRANSMISSION LINE TREATMENT OF SPURIOUS RESONANCE
IN FERRITE CYLINDER SPACE CHARGE COMPENSATION SYSTEM

James E. Griffin

Introduction

Several meters of ferrite rings (Toshiba M4C21,) tightly packed within ~ 1m stainless
steel tubes, have been installed in the Los Alamos Nat'l.Lab. Proton Storage Ring (PSR) for the
purpose of cancellation of longltudmal space charge effects [1,2]. After the installation, high
intensity operation of the ring was hampered by a serious spontaneous self- -bunching (SSB)
instability at rotation harmonic 26 (72.67 MHz.). Two turns of the PSR beam current, with well
developed instability bunching, as detected by a broad-band longitudinal pick-up, are shown in
Figure 1.

At Fermilab a seven core section of a similar ferrite inductor was assembled and excited
at each end by small antennae. In this experiment there was no longitudinal conductor extending
along the axis, so longitudinal electric fields were not ‘shorted out' or attenuated by a parallel
inductance. Signals developed in the ferrite by network analyzer excitation were observed at
high sensitivity at the 'output' antenna. A relatively narrow resonance with center frequency near
84 MHz was observed. The 3 dB bandwidth of the resonance appears to be ~ 21 MHz, resulting
in Q~ 3.9. The observed resonance is shown in Figure 2. It is the purpose of this note to
examine the hypothesis that a resonance such as this may be characterized as a standing wave
TMo;o radial transmission line resonance of the ferrite cylinder coupled to the vacuum space
within the cylinder.

Lnrlmhd imal Inah hﬂ tr
! E_varik

E
P T— —81.942 d

. l’ | |l \
3 rli' o 'IE' SdBs
h [, J -
My ‘\ IR
=
! ', ,‘ .
be? - _
—— e —— o 60 ° 8p 120 150
R4, OS] RO BV 22 Mt Y, 0, S0y S Fregq. MHz
‘ o Figure 2. Resonance observed in
Figure 1. Two tums of LANL injected - model of ferrite cylinder space charge

bean with well developed instability ' correcting insertion. LANL PSR
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First results fromr LANL were encouraging but equivocal. Ferrite removed.

About one year later, when upgrade results were not quite as good as
anticipated, ferrite tanks were reinstalled. Results were promising, but a self-
bunching (u-wave-like) instability at high intensity was observed.

Again ferrite tanks removed. Could we design some ferrite inductors that
would not generate instability.

Last year Dave Wildman, Milorad Popovic, and | assembeled a stack of cores
to investigate the problem. We located a TMoy (??) resonance near the

- offending frequency ~ 77 MHz. Resonance Q appears to be about 2, not

inconsistent with available data on the ferrite.

| wanted to change the ferrite permeability selectively along the tank to
spread the resonance. This was to be done by attaching pérmanent magnets
to the outside. After a few broken fingers and inconclusive data we decided
this was not going to work.

Milorad said "heat the ferrite, that will reduce the Q, and maybe also mcrease
the permeability!" Score at least one for Milorad.

At latest hearmg the tanks are reinstalled in the PSR with heating blankets.

Results no longer equivocal.

There is at least one moral.

- With stationary rf bucket, bunch length = Const. x (V)"

Rf power is ex_pensive to buy and operate. Certainly more than ferrite.
Let the beam do the work.
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LONGITUDINAL IMPEDANCE TUNER
USING HIGH PERMEABILITY MATERIAL

‘K.Koba, D.Arakawa, M.Fujieda, K.Ikegami, C. Kubota S.Machida, Y .Mori, C. Ohmorz K.Shintp,
S.Shibuya, A.Takagi, T.Toyama, T.Uesugi, T.Watanabe, M.Yamamoto,M. Yoshii
'KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305, Japan

Abstract
' Space charge effects cause the emittance gowth and
the beam insiability, when the short bunched beams are
accelerated in a high intensity proton synchrotron. The
impedance tuner using high permeability materials has
been doveloped to cancel the lonoltudmal space charge
effects,

We installed the impedance tuner in the main ring of
KEK proton synchrotron (PS) and obsered the canceling
effect.

3. Experimental setup

The impedance tuoer consists of eight cores

of FOINEMET with § wirn bias coil as shown in Fig.2. The
bias coii has “8” shape to eliminate the beam induced
RF currents. All the cores are installed in a cylindrical
vacuum chamber. The bias cumrent is varied from 0 to 30

A (010 180 A - Tum).
r 'rorm'gar{:or:mg%n -'

I
VYacuum Char!'xber
1

Lo

lm-—l-J

Beam Lige

L--—n—-\

Fig.2 Experimental setwp of the impedance tuner
installed in the KEK PS 1nain ring
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Figl. The inductance as a function of freguency is
measured with a bias current from Oto 48 A/,

5. Results

Thoe frequency shiftas a function of intensity is
plotted in Fig.5. The dashed line is a fined line of 2 data
befors installation and the solid line is that after the
installation. The siope o dashed line cam be solely
explained by space chargs impedance, that is calculated
2s 440 ohms. On the otherhand, the slope of solid lines is
halved. Therefore, the inductive impedarce made by the
FINEMET caoncels the half of the space charpe
impedance,

8 “gymuwiors)
I i wtrar =

Trequency shift

iptznsity[ppb]

The measurad frequency shifts ofthe quadrupgie
funztion of the beam iniensity are

Fig.5
oscillations as z
plotted.
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INDUCTIVE CAVITIES FOR PSR LONG BUNCH MODE
R. K. Cooper, D. W. Hudgings, and G. P. Lawrence

/ FoRe e RINgeS

2% SO = s

Fig. 5. Possible design for unit of a 20 element

distributed indurtive
insert system {approximately to scale) : '



Inductive Insert Passive Space Charge Studies

In 1996 or 1997, in the early phase of the Fermilab Proton
Driver and/or muon collider design, | proposed a study of the passive
space charge compensation idea to combat space charge
interference with short bunch preparation by bunch rotation.

At the same time K. Koba and collaborators at KEK Laboratory
in Japan initiated an experiment in the 12 GeV Proton Synchrotron.

In 1982 an inductive insert was proposed for the LANL PSR by
R. Cooper, D. Hudgings, and G. Lawrence. (Also another by T.
Hardek 1 think.) No results are reported.

In 1997, in order to test the concept in the best possible
machine, D. Wildman and | built two ~ 1 m. ferrite inductor tanks at
Fermilab, using old, discarded (but carefully preserved) Toshiba
M4C21, ferrite. We persuaded B. Macek to allow installation for a
two day. test prior to upgrade shutdown in August 1997. Results were

LA
tat
equivocal but encouraging. The inserts were removed following the

first studies. _

After the upgrade shutdown the tanks were re-installed, with
promising results. But self-bunching instability at high intensity forced
removal. The cause of the instability (also somewhat equivocal) was
determined to be a tank/ferrite resonance near 80 MHz.

As a result of an ingenious suggestion by M. Popocic (Fermilab),

the Q and shunt impedance of the resonance were reduced to a safe
level by heating the ferrite. The tanks were reinstalled with controlled

heating and are operating successfully. The PSR has reached record
intensity using skew quadrupoles, Landau damping, and ferrite.
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FSTABILIZATION OF INTENSE COASTING BEAMS
' IN PARTICLE ACCELERATORS BY MEANS
" OF INDUCTIVE WALLSt

e R. J Bucos and V. K. NeiL _ -
" Lawrence Radiation Laboratory, , Usiversity of California, Livermore, Californla
 (Recelved 8 November 1965} .
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1. I_NT‘IGDUCTIOH
Rermmss relativistic beam of charged particles circulating in an accelerator can be
to the "negative mass’ instability (NLIEN o ol,, 1959). The form of the per-
ition is & longitudinal (azimuthal)} demity modulation of the beam, and the
s mechanism is the longitudinal electric field arising from the pecturbation.
husual physical explanation of the instability is that the particles at the front of a
w of incressed density feel 2 longitudinal force in the forward direction. If the
» energy nd the form of the magnetic guide field is such that the circulation fre-
. dmwkam;mumy[mmmdﬁm-w}.
mmmmm.wmmwummmmmmy
pt particles move backward towards the region of increased density, Similasly,
s at the back of the bunch feel & deceleration and move forward toward the
. Particles bebave, as far a3 azimythal motion is concerned, s if they had a,
bive mass. Radial electromagntic forces arising from the perturbation can alsic
fian effect on the instability (NEIL and HECKROTTE, 1965), but this is a negligible
it in most particle accelerators. s

pency andjor transverse oscillation ampiitudes (NIELSEN &7 al; New, 1963). In

work we shall investigate & stabilization method that does not rely on ‘such -
Rhani The method is suggested by an snalogy between the circulating beam 2pd

Jom 10 rectilipear motion, such as those used in many microwave beam tube. Abeam

Jotitine: motioniu‘posiﬁwm'bmint!umofﬂwpmodingmh.

p  beam is surrounded by perfoctly conducting walls, a iongitodinal density

’onimpmoedonfhebumﬁﬂmtw,bmwinundergombkowiﬂnﬁom.

B behaviour of these stable space-ciarge waves is radicatly altered if the conducting
N is replaced by a wall with an impedance Z = R 4 {X, where Z is thé impedance

she wall and R and X are resl quantities. For s transverse magnetic wave (E-wave) -
4 Work performed under the suspices of the U.S, Atomic Energy Commission. ‘
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STABILIZATION OF NON-RELATIVISTIC BEAMS BY
MEANS OF - INDUCTIVE WALLS* |

V. K. Nei. and R. J. Brigest

Lawrence Radiation Laboratory, University of California
Livermore,California

(Received 1 December 1966)

Abstract—A method for suppressing the negative-mass instability in beams of particies with non-
relativistic velocity is proposed and investigated theoretically. The method involves surrounding the
beam with an inductive wall structure incorporatin lumped-circuit inductors and does not rely on a

velocity spread in the beam. The condition for stability of lon%;t:ginal oscillations of & given wave-
length'is v > v,, where v is the particle velocity and v, is the velocity of 8 wave with the same
wavelength in the same structure, but with the beam rep by a perfect conductor. A somewhat
different structure consisting of & conducting ribbon wound in & helix around the beam is also
analysed semi-quantitatively and shown to be cffective in suppressing the instability.

1. INTRODUCTION

A METHOD of suppressing the negative-mass instability (NIELSEN, SESSLER and SYMON,
1959) in a beam of particles with relativistic velocity has been described in a previous
work (BriGGs and Ne1L, 1966). The method does not rely on velocity spread in the
beam to suppress the unstable longitudinal oscillations. By means of an inductive wall
surrounding the beam, the electric-field configuration arising from the oscillations is
altered in such a way that the oscillations become stable. Although the geometry and
detailed analysis in the previous report apply mainly to beams in particle accelerators,
the general principle is applicable to other geometries and to non-relativistic particle
velocities. The purpose of this work is to extend the theory given in the earlier report to
include the more complex wall structures necessary to stabilize non-relativistic and

moderately relativistic beams. -
This work was originally stimulated by the dramatic stabilization of the ion beam
in a Calutron (SHIPLEY ef al., 1964) by placing various passive circuits in close proxi-
mity to the beam. However, it is not clear that the results of this work give any insight
into the stabilizing mechanism in the Calutron. Indeed, the exact type of instability
that was suppressed in the Calutron has not been identified. The experimental
situation is complicated gy the presence of cold plasma, which may play an important

role in the instability and its suppression. _

" The necessary condition that longitudinal oscillations be stable may be stated in
" terms of the Ume-average energy o# %Ec perturbed electromagnetic Eeid. The total
ic energy must exceed the total electric ¢ i i ide the beam.
For oscillations in a relativistic beam enclosed by conducting
are nearly equal, but the magnetic energy is less than the electric energy. Therefore,
only slight modifications of the wall are necessary to reverse this situation. In contrast,
for non-relativistic particles the magnetic energy arising from the perturbation is very
* Work performed under the auspices of the U.S. Atomic Energy Commission. - -
+ Department of Electrical Enginecring and The Research Laboratory of Electronics, Massachu-

setts Institote of Technology, Cambridge, Massachusetts.
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frequency) in such machines will be at relatively low frequency, in the MHz range. At low
ﬁ'eqﬁencies the vacuum chamber impedance seen by the beam will be predominantly inductive. The
wall image of the beam current will generate an effective voltage in the ring inductance which is again
proportional to the slope of the line charge distribution (or, effectively, to the time derivative of the
beam current). Below transition the phase of the beam induced voltage {with respect to the phase
of the Fourier component of beam current which is generating it} is such that it will induce self
bunching of the beam. This implies that the vacuum chamber induced voltage which is induced by 2
beam Fourier component resulting from externally applied rf voltage, will add to that voltage. The
" net effective voltage per turn_seen by a particle within the bunch resulting from ring (inductive)
impedance and the space charge self-voltage is expressed:

y - RO &% o lopR,
s | 2By’
or (I)
L] Z -
V. =21 LAY (muwy)cos(mw, ) Eofo - L{w)|.
s “"’dtm=l me 7 2BY°Q,

Swsstieneble. I

In these expressxons]_:T-F 2in(b/a)|where b and a are the nominal vacuum chamber aperture and
beam radii®. Z = 377 Ohms, and £, L is the vacuum chamber inductive reactance at the rotation
frequency (nominally 15 -25 Ohms and referred to as Z/n). The signs in the equations are consistent
with the sign of the applied rf voltage below transition. In the second expression L{w) is meant to
imply that the vacuum chamber inductance may be a function of frequency (i.e. part of the inductance
may be due to presence of ferrite etc.). |

The constant g, may range from 2 to ~3 for the machines under consideration. The space
charge term in the (ﬁrst)‘expression above may fall in the range 100 - 250 Ohms. It appears
reasonable to conclude that, at some chosen energy, the space charge effect may be cancelled exactly
by intentionally increasing the ring inductive reactance and forcing the term in brackets to a very small
value, or zero. This concept was proposed in 1968 by Sessler and Vaccaro™ and later by RK.
Cooper et al™” and by T Hardek™’ (1982).

[In 1966 V K. Neil and R.J. Briggs proposed intentional insertion of inductance into particle
beam vacuum chamberst™®, but this was intended as a proposal to stabilize ion beams against
negative-mass instability. These proposals were presumably directed at situations where the beams
were above transition, where introduction of inductance would have a stabilizing effect. In the
proposal considered here, the opposite is true.]



incoherent phase oscillation frequency, the bumch
length and the size of the RF-bucket. Thesé effects
have been investigated with bunched beams in the ISR,
By measuring the shift of the quadrupole mode phase
oscillation frequency. the strength of the gelf-forces
was determined. The inductive wall is dominant -and its.
impedsnce (divided by the mode number) was measured to
be [z[/n'z 26 Ohms. An increase of bunch length with
current was measured. It can be explained by the in-
ductive {mpedance up to a certain- current; beyond that
an excessive, unexplained bunech lengthening occurs.
The reduction of the bucket size affects the stacking
Process. By correcting for it, an inéreased density
of the stacked beam was achieved.

1.

" The longitudinal forces on a beam depend on its
surroundings. The space charge forces of a beam in a
perfectly conducting chamber have been calculated by
Rielsen et al.l), - & resistive surrdunding can lead to
the resistive wall instability, as shown by Neil and’
Sessler 2), An elegant method to deal with an inductive
wall has been developed by Neil and Briggs 3); we will
use it here. The effect of a general wall impedance
has been treated by Sessler and Vaccaro 4).

Introduction
Incroduction

dz
' E‘.’!.L' £ . r ‘
N S 2
" T -z _I—.‘ E’

Fig, .1. Fields with inductive wall

We consider a bunch with a charge per. unit length

e} moving, with velocity v = Bc in a circular pipe as
showm in fig, 1. The wall is considered to be perfec-
tly conducting but has a distribured inductance dL/dz
per unit length. We assume cireular symmetry in the
transverse directions and a line density ) which does
not change much over a longitudinal distance of order

© of the chamber radius. The line charge produces a
radial electric field E; which is proportional to 3 1),
The surface charges induced by this field on the cham-
.ber produce a wall current i' which has the same mag-
nitude but opposite sign as the ac-component of the
local beam current i; This current i' gives dn
electric field E' in the distributed wall inductanca3?}

A A B PPy
A T azeh g .

dz 3t
By caleulating the line integral 5E ds along the dotted

path indicated in fig. 1; the longitudinal field E, in
the beam is obtained

1381

[ 4

TEEE TAansactions on Nuckean Sclence, Vol.NS-22, No.3, June 1975

. EFFECTS OF SPACE CHAﬁGE AND REACTIVE WALL IMPEDANCE
K _ ’ . ON BUNCHED BEAMS : .
,.—"’Ja §. Hansen, H.G. Hereward, A, Hofmann, K. Hibuer, 5. Myers
CERN
Geneva, Switzerland
Space charge and reactive wall impedance create E. u =enih[ Eo PR ¢ T cz] 1
longitudinal forces inside the bunch which change the z dzlém e, ¥* T Wz 6 ’ m

where g, is the well known coupling cosffieient. For z
eircular beam of radius = in a circular pipe of redius
b this coefficient is go = 1 + 2 In{b/a)..In the general
cage, where there is no circular symmetry, the situation
is more complicated, but the properties of the wall can
always be described by a coupling coefficient gy and an
%ctance per unit length dL/dz which is seen by the beam.
Integrating the longitudinal field 'E, (1) over the cir-
cumference 2nR of the machine gives the voltege Uy per
turn, seen by a partiele which is at g digtance z from
the bunch centre . :

-- 72"_(.2').[33 -1 g2 2]
e e [z "L # e

where L ig the total inductance per turn.

{2)

We zssume now bunches with & parabolic line density

distribution
- BN [22_ 2] A 12 ¥
Alz) 1-3-[-4— z . 3;; -7z

with & = full bunch léngth, N ~ number of particles per
" bunch,

This parabolic distriburion is a 'very good approxi-
mation for the proton bunches in the ISR and produces
self-fields which are linear in 2. Using the total beam
current I = eMNE, (Menumber of bunches, fp=rev. freguency)
and replacing the eotal induetance L by its impedance

[Z]= L divided by the mode number g = w/2nf,

‘gl = 2nf L

gives for the voltage per turn

;]: » (2o = Yug/eg= 377 Ohms).

<M R\ £ " [2ByES
. LEYS

The external RF-voltage

Upp=Uysin ¢ = Uo({@-Bg)cos B +ain Ps)=- Uocosﬂs% zﬁUbsinba

(h = harmonie number, ¥,
to be added to Us.

= -synchfonous phase angle) has
The total voltage is

- kb c 31 RV ez, |z
U Upz cos ﬁs_ (l m(—r) [fg?% - H])z
+ U, sin @, . 3)

Vit

LITHLE]

Fig:2, wall

RF-voltage with inductive
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CONCLUSIONS

e Insertion of inductance for passive compensation of longitudinal
space charge potential well distortion works as advertised (below

transition).

¢ In some cases over-compensation may be useful. It may provide

beam induced focusing not easily generated by external rf

voltage.
e [t is inexpensive, with very low operating cost. -

But problems associated with the real part of the permeability;
may cause instabilities

and could cause undesired increase in bunching factor or

increased Laslett tune shift.



